Composite functions
function composition prompt example
TL;DR(中文)
- 这是一个
function composition的测试:给g(x)=f^{-1}(x)与若干映射点,反推出f的对应关系,再计算f(f(f(6)))。 - 适合用来测:模型是否能把 inverse mapping 处理正确、是否会在多次 composition 时出错。
- 落地建议:要求模型输出 mapping table,并在每一步 composition 后输出中间值。
Background
This prompt tests an LLM's mathematical capabilities by prompting it to evaluate a function composition.
How to Apply(中文)
建议按 “先建立映射,再逐步计算” 的流程:
- 由
g(x)=f^{-1}(x)得到:f(g(x)) = x(也就是把g的 pairs 反向得到f的 pairs) - 用表格列出
f的 mapping(例如f(5)=0,f(7)=4等) - 依次计算
f(6) → f(f(6)) → f(f(f(6)))
How to Iterate(中文)
- 强制输出
mapping table(结构化)后再给最终答案 - 加
self-check:把f与g互相验证(检查g(f(x)) = x在给定点是否成立) - 对抗测试:增加更多点、加入干扰点、或让
f非单射的情况看模型是否能发现矛盾
Self-check rubric(中文)
- 是否正确理解
inverse关系并构造了f的映射? - composition 是否逐步计算且中间值正确?
- 是否检查了映射是否一致(无冲突)?
Practice(中文)
练习:把问题改成 f(f(2))、f(f(f(9))) 等不同目标,并要求模型输出:
- mapping table
- 每一步中间值
- 简短的 consistency check
Prompt
Suppose g(x) = f^{-1}(x), g(0) = 5, g(4) = 7, g(3) = 2, g(7) = 9, g(9) = 6.
What is f(f(f(6)))?
Code / API
OpenAI (Python)
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "user",
"content": "Suppose g(x) = f^{-1}(x), g(0) = 5, g(4) = 7, g(3) = 2, g(7) = 9, g(9) = 6. What is f(f(f(6)))?",
}
],
temperature=1,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
Fireworks (Python)
import fireworks.client
fireworks.client.api_key = "<FIREWORKS_API_KEY>"
completion = fireworks.client.ChatCompletion.create(
model="accounts/fireworks/models/mixtral-8x7b-instruct",
messages=[
{
"role": "user",
"content": "Suppose g(x) = f^{-1}(x), g(0) = 5, g(4) = 7, g(3) = 2, g(7) = 9, g(9) = 6. What is f(f(f(6)))?",
}
],
stop=["<|im_start|>", "<|im_end|>", "<|endoftext|>"],
stream=True,
n=1,
top_p=1,
top_k=40,
presence_penalty=0,
frequency_penalty=0,
prompt_truncate_len=1024,
context_length_exceeded_behavior="truncate",
temperature=0.9,
max_tokens=4000,
)